
Elemental design patterns 
 

Elemental design patterns (EDPs) were proposed by Smith and Stotts [4]. They provide 

solutions to very common programming problems (we can state that these problems occur 

in the everyday practice of each programmer). They share the same aim with the design 

patterns, but they are applied to more restricted and specific issues. In fact, if design 

patterns propose solutions to problems which can involve a certain number of classes, 

EDPs address problems of much more limited dimensions, which generally do not involve 

more than three classes. There are 16 EDPs subdivided into three categories: 

  

- Object Elements: contains three EDPs related to the creation and the referencing of 

objects as well as to the presence of abstract methods inside an abstract class, or 

interface methods inside an interface; 

- Method Call: collects twelve EDPs which represent the various forms of possible method 

calls; 

- Type Relation: contains a single EDP representing the inheritance relationship between 

two classes, as well as the implementation of an interface.  

 

EDPs are defined with the same description structure used in [2] for the presentation of 

design patterns. For a complete description of each EDP refer to [5]. EDPs can be detected 

inside Java systems through the Micro-structures detector module, which is part of the 

MARPLE (Metrics and Architecture REcontruction PLugin for Eclipse) project [1]. 

MARPLE has been developed for design pattern detection and software architecture 

reconstruction purposes, and it is based on the detection of micro-structures. However, the 

definition of EDPs originated by considerations made on C++ source code. Smith and 

Stotts developed SPQR [6], an approach to design pattern detection based on the 

identification of EDPs inside the subject systems. 

 

 

Towards a more formal definition of EDPs 

 

In [9] we proposed to introduce a unique catalogue of micro-structures that resembles 

EDPs [5], clues [7, 8] and micro patterns [3] redefining them in terms of concepts that are 

common to all the categories of micro-structures we consider, and that will be exploited in 

their definitions. We call these common concepts code atoms (or atoms for brevity). Code 

atoms are simple code elements (more than the micro-structures) that will be used to 

provide a new and more formal definition of micro-structures. In the new definition of 

micro-structures, we will use these atoms, and eventually any micro-structure the element 

to be defined depends on. The new definition will provide an unambiguous meaning to 

each micro-structure, and will generate a unique catalogue of micro-structures based only 

on common concepts. 



The elements and concepts that will be used in the definition of the atoms and of the 

micro-structures will now be defined. These concepts are strictly related with the object-

oriented paradigm. As we focused in particular on Java systems, we will consider this 

language as our target. 

Any object-oriented system is based on the key concept of type. We will use T to denote a 

type. A type can itself be either a class (denoted by C) or an interface (denoted by I). If we 

deal with a set of types, classes or interfaces, each of them will be specified by an index: Ti 

will be therefore the i-th type out of a set of n types T1, …, Tn. The same considerations 

reflect on classes and interfaces. 

Given a type T, we can obtain information about it through the following statements:  

 

- name(T): it represents the qualified name of the type, i.e. the name of the class or 

interface denoting it, preceded by its package name; 

- attributes(T): it represents the set of attributes that have been defined by T; 

- methods(T): it represents the set of methods that have been defined by T; 

- inst(T): it represents a generic instance of T, that can have been created either within T 

(therefore it can be handled as an attribute of T) or within another type. 
 

Given an attribute a ∈ attributes(T), the following statements are defined: 

 

- name(a): it represents the name of attribute a; 

- typeOf(a): it represent the type of a, which can be either a simple type, a type T, or a list 

of n attributes list(a1, …, an); 

 

Given a method m ∈ methods(T), the following statements are defined: 

 

- name(m): it represents the name of method m; 

- constructor(m): it represents the fact that method m is a constructor; 

- returnType(m): it represents the return type of the method m, that can be either a type T, 

a simple type, or void; 

- params(m): it represents the set of formal parameters received in input by method m; 

- body(m): it represents the body of method m, i.e. all the statements and operations 

defined by the method. The body could also be empty: this aspect is represented by the 

“is empty” clause. The body can itself contain instances of atoms or micro-structures, or 

other kinds of statements: this containment aspect is specified by the “contains” 

relationship; 

- returnedValue(m): it represents a single returned value of the method; 



- returnStatements(m): it represents the set of return statements or return points specified 

by the method implementation; 

- typeOf(m): it represents the type that defined method m. As m ∈ methods(T), therefore 

typeOf(m) = T. 

 

Given two methods m1 and m2, m1 = m2 will indicate that the two methods have the same 

signature. 

Within the body of a method we can find two special elements, that we call containers: they 

are controlStatement, which represents all the control structures that are available in the 

reference programming language (e.g. in Java, if and switch blocks), and loop, which 

represents all kind of loops available in the reference programming language (e.g. for, 

while, do-while, enhanced for). Both controlStatement and loop may operate on a set of 

parameters: 

 

- param(controlStatement), param(loop): it represents the set of attributes handled by the 

control statement or loop structure. 

 

Another kind of statement that needs to be considered in order to correctly define the sets 

of atoms and micro-structures is the method invocation between two methods: 

 

- methodInvocation(m1, m2): it represents the invocation of method m2 occurring within 

the body of method m1; 

 

Given a method invocation, the following properties can be obtained: 

 

- source(methodInvocation): the actual object invoking m2, that is an instance of typeOf(m1); 

- target(methodInvocation): the actual object on which m2 is invoked, that is an instance of 

typeOf(m2); 

- params(methodInvocation): it represents the set of actual parameters passed to the method 

invocation. 

 

On both types, attributes and methods we can use the logical operators ∧, ∨, ¬, ∀, ∃, ∃!, 

according to their usual meaning. Moreover, we use the cardinality operator || to obtain 

the number of elements composing a specific set (e.g. |methods(T)| will return the number 

of methods defined in T). Finally the operator “is” will be used to declare that a type, an 

attribute or a method must satisfy a particular modifier (e.g. “a is private” means that the 

attribute a must be defined private). 



Now that we have introduced the notions and concepts that will guide us in the definition 

and specification of micro-structures, each of them can be defined (according to its 

definition) on a type, on an attribute, or on a method: 

 

- micro_structure_name(T): the micro-structure is defined on type T; 

- micro_structure_name(a): the micro-structure is defined on attribute a; 

- micro_structure_name(m): the micro-structure is defined on method m. 

 

However, the largest part of micro-structures represents information relating two entities; 

in this case, both the source of the micro-structure (i.e. the entity that actually represents it) 

and its destination (i.e. the entity the micro-structure depends on) must be specified (for 

example, micro_structure_name(T1, T2) represents a micro-structure that is implemented in 

T1, but whose existence is strictly related to T2). 

In this document, we provide the definitions for each elemental design patterns according 

to the concepts presented so far. For a complete overview of code atoms, clues and micro 

patterns, please refer to [9]. 

 

 

Elemental design patterns definitions 

 

EDP 

category 
EDP name Definition Explanation [5] 

O
b

je
ct

 E
le

m
en

ts
 

Abstract 

interface 

AbstractInterface(m) iff interface(typeOf(m)) ∨ 

(abstract class(typeOf(m)) ∧ abstract method(m)) 

It provides a common interface 

for operating on an object type 

family, but delaying definition of 

the actual operations to a later 

time. 

Retrieve 

Retrieve(o) iff o ∈ attributes(C) ∧ ∃ assignment(o, 

value): value = returnedValue(m) ∨ value = o2 ∈ 

attributes(C2) ∧ typeOf(o) = typeOf(o2) 

To use an object from another 

non-local source in the local 

scope, thereby creating a 

relationship 

and tie between the local object 

and the remote one. 

T
y

p
e 

R
el

a
ti

o
n

 

Inheritance 
Inheritance(T1, T2) iff interface inherited(T1, T2) ∨ 

class inherited(T1, T2) 

To use all of another classes’ 

interface, and all or some of its 

implementation. 

 

Table 1 – Object Elements and Type Relation EDPs definitions 

 

 

 



EDP 

category 
EDP name Definition Explanation [5] 

M
et

h
o

d
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a
ll

 

Recursion 

Recursion(m1, m2) iff ∃ method invocation(m1, m2): 

Source(method invocation(m1, m2)) = target(method 

invocation(m1, m2) ∧ 

typeOf(m1) = typeOf(m2) ∧ 

signature(m1) = signature(m2) 

To accomplish a larger task by 

performing many smaller similar 

tasks, using the same object 

state. 

Conglomeration 

Conglomeration(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) = target(method 

invocation(m1, m2) ∧ 

typeOf(m1) = typeOf(m2) ∧ 

signature(m1) ≠ signature(m2) 

To bring together, or 

conglomerate, diverse operations 

and behaviours to complete a 

more complex task within a single 

object. 

Extend method 

Extend method(m1, m2) iff ∃ method invocation(m1, 

m2): 

Source(method invocation(m1, m2)) = target(method 

invocation(m1, m2) ∧ 

Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) = signature(m2) 

Add to, not replace, behaviour in 

a method of a superclass while 

reusing existing code. 

Revert method 

Revert method(m1, m2) iff ∃ method invocation(m1, 

m2): 

Source(method invocation(m1, m2)) = target(method 

invocation(m1, m2) ∧ 

Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) ≠  signature(m2) 

Bypass the current class’ 

implementation of a method, and 

instead use the superclass’ 

implementation, reverting to an 

’earlier’ method body. 

Redirect 

Redirect(m1, m2) iff ∃ method invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

typeOf(m1) ≠ typeOf(m2) ∧ 

signature(m1) = signature(m2) 

To request that another object 

perform a tightly related subtask 

to the task at hand, perhaps 

performing the basic work. 

Delegate 

Delegate(m1, m2) iff ∃ method invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

typeOf(m1) ≠ typeOf(m2) ∧ 

signature(m1) ≠ signature(m2) 

To parcel out, or delegate, a 

portion of the current work to 

another method in another object. 

 

Table 2 – The first six Method Call EDPs definitions 

 

 

 

 



EDP 

category 
EDP name Definition Explanation [5] 

M
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h
o

d
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Redirected 

recursion 

Redirected recursion(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

typeOf(m1) = typeOf(m2) ∧ 

signature(m1) = signature(m2) 

To perform a recursive method, 

but one that requires interacting 

with multiple objects of the same 

type. 

Delegated 

conglomeration 

Delegated conglomeration(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

typeOf(m1) = typeOf(m2) ∧ 

signature(m1) ≠ signature(m2) 

A Conglomeration pattern is 

appropriate, but we need to work 

with a distinct instance of our 

object type, resulting in a need for 

the Delegate pattern to be used. 

Redirect in 

family 

Redirect in family(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) = signature(m2) 

Redirect some portion of a 

method’s implementation to a 

possible cluster of classes, of 

which the current class is a 

member. 

Delegate in 

family 

Delegate in family(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) ≠ signature(m2) 

Related classes are often defined 

as such to perform tasks 

collectively. In such cases, 

multiple objects of related types 

can interact in generalized ways 

to delegate tasks to one another. 

Redirect in 

limited family 

Redirect in limited family(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

∃ T: ancestor(typeOf(m1), T) ∧ ancestor(typeOf(m2), 

T) ∧ ¬Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) = signature(m2) 

When Redirect in family is too 

generalized, and it is necessary to 

pre-select a sub-tree of the class 

hierarchy for polymorphism. 

Delegate in 

limited family 

Delegate in limited family(m1, m2) iff ∃ method 

invocation(m1, m2): 

Source(method invocation(m1, m2)) ≠ target(method 

invocation(m1, m2) ∧ 

∃ T: ancestor(typeOf(m1), T) ∧ ancestor(typeOf(m2), 

T) ∧ ¬Ancestor(typeOf(m1),  typeOf(m2)) ∧ 

signature(m1) ≠  signature(m2) 

When Delegate in family is too 

generalized, and it is necessary to 

pre-select a sub-tree of the class 

hierarchy for polymorphism. 

 

Table 3 – The second six Method Call EDPs definitions 
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