
Elemental design patterns

Elemental design patterns (EDPs) were proposed by Smith and Stotts [4]. They provide

solutions to very common programming problems (we can state that these problems occur

in the everyday practice of each programmer). They share the same aim with the design

patterns, but they are applied to more restricted and specific issues. In fact, if design

patterns propose solutions to problems which can involve a certain number of classes,

EDPs address problems of much more limited dimensions, which generally do not involve

more than three classes. There are 16 EDPs subdivided into three categories:

- Object Elements: contains three EDPs related to the creation and the referencing of

objects as well as to the presence of abstract methods inside an abstract class, or

interface methods inside an interface;

- Method Call: collects twelve EDPs which represent the various forms of possible method

calls;

- Type Relation: contains a single EDP representing the inheritance relationship between

two classes, as well as the implementation of an interface.

EDPs are defined with the same description structure used in [2] for the presentation of

design patterns. For a complete description of each EDP refer to [5]. EDPs can be detected

inside Java systems through the Micro-structures detector module, which is part of the

MARPLE (Metrics and Architecture REcontruction PLugin for Eclipse) project [1].

MARPLE has been developed for design pattern detection and software architecture

reconstruction purposes, and it is based on the detection of micro-structures. However, the

definition of EDPs originated by considerations made on C++ source code. Smith and

Stotts developed SPQR [6], an approach to design pattern detection based on the

identification of EDPs inside the subject systems.

Towards a more formal definition of EDPs

In [9] we proposed to introduce a unique catalogue of micro-structures that resembles

EDPs [5], clues [7, 8] and micro patterns [3] redefining them in terms of concepts that are

common to all the categories of micro-structures we consider, and that will be exploited in

their definitions. We call these common concepts code atoms (or atoms for brevity). Code

atoms are simple code elements (more than the micro-structures) that will be used to

provide a new and more formal definition of micro-structures. In the new definition of

micro-structures, we will use these atoms, and eventually any micro-structure the element

to be defined depends on. The new definition will provide an unambiguous meaning to

each micro-structure, and will generate a unique catalogue of micro-structures based only

on common concepts.

The elements and concepts that will be used in the definition of the atoms and of the

micro-structures will now be defined. These concepts are strictly related with the object-

oriented paradigm. As we focused in particular on Java systems, we will consider this

language as our target.

Any object-oriented system is based on the key concept of type. We will use T to denote a

type. A type can itself be either a class (denoted by C) or an interface (denoted by I). If we

deal with a set of types, classes or interfaces, each of them will be specified by an index: Ti

will be therefore the i-th type out of a set of n types T1, …, Tn. The same considerations

reflect on classes and interfaces.

Given a type T, we can obtain information about it through the following statements:

- name(T): it represents the qualified name of the type, i.e. the name of the class or

interface denoting it, preceded by its package name;

- attributes(T): it represents the set of attributes that have been defined by T;

- methods(T): it represents the set of methods that have been defined by T;

- inst(T): it represents a generic instance of T, that can have been created either within T

(therefore it can be handled as an attribute of T) or within another type.

Given an attribute a ∈ attributes(T), the following statements are defined:

- name(a): it represents the name of attribute a;

- typeOf(a): it represent the type of a, which can be either a simple type, a type T, or a list

of n attributes list(a1, …, an);

Given a method m ∈ methods(T), the following statements are defined:

- name(m): it represents the name of method m;

- constructor(m): it represents the fact that method m is a constructor;

- returnType(m): it represents the return type of the method m, that can be either a type T,

a simple type, or void;

- params(m): it represents the set of formal parameters received in input by method m;

- body(m): it represents the body of method m, i.e. all the statements and operations

defined by the method. The body could also be empty: this aspect is represented by the

“is empty” clause. The body can itself contain instances of atoms or micro-structures, or

other kinds of statements: this containment aspect is specified by the “contains”

relationship;

- returnedValue(m): it represents a single returned value of the method;

- returnStatements(m): it represents the set of return statements or return points specified

by the method implementation;

- typeOf(m): it represents the type that defined method m. As m ∈ methods(T), therefore

typeOf(m) = T.

Given two methods m1 and m2, m1 = m2 will indicate that the two methods have the same

signature.

Within the body of a method we can find two special elements, that we call containers: they

are controlStatement, which represents all the control structures that are available in the

reference programming language (e.g. in Java, if and switch blocks), and loop, which

represents all kind of loops available in the reference programming language (e.g. for,

while, do-while, enhanced for). Both controlStatement and loop may operate on a set of

parameters:

- param(controlStatement), param(loop): it represents the set of attributes handled by the

control statement or loop structure.

Another kind of statement that needs to be considered in order to correctly define the sets

of atoms and micro-structures is the method invocation between two methods:

- methodInvocation(m1, m2): it represents the invocation of method m2 occurring within

the body of method m1;

Given a method invocation, the following properties can be obtained:

- source(methodInvocation): the actual object invoking m2, that is an instance of typeOf(m1);

- target(methodInvocation): the actual object on which m2 is invoked, that is an instance of

typeOf(m2);

- params(methodInvocation): it represents the set of actual parameters passed to the method

invocation.

On both types, attributes and methods we can use the logical operators ∧, ∨, ¬, ∀, ∃, ∃!,

according to their usual meaning. Moreover, we use the cardinality operator || to obtain

the number of elements composing a specific set (e.g. |methods(T)| will return the number

of methods defined in T). Finally the operator “is” will be used to declare that a type, an

attribute or a method must satisfy a particular modifier (e.g. “a is private” means that the

attribute a must be defined private).

Now that we have introduced the notions and concepts that will guide us in the definition

and specification of micro-structures, each of them can be defined (according to its

definition) on a type, on an attribute, or on a method:

- micro_structure_name(T): the micro-structure is defined on type T;

- micro_structure_name(a): the micro-structure is defined on attribute a;

- micro_structure_name(m): the micro-structure is defined on method m.

However, the largest part of micro-structures represents information relating two entities;

in this case, both the source of the micro-structure (i.e. the entity that actually represents it)

and its destination (i.e. the entity the micro-structure depends on) must be specified (for

example, micro_structure_name(T1, T2) represents a micro-structure that is implemented in

T1, but whose existence is strictly related to T2).

In this document, we provide the definitions for each elemental design patterns according

to the concepts presented so far. For a complete overview of code atoms, clues and micro

patterns, please refer to [9].

Elemental design patterns definitions

EDP

category
EDP name Definition Explanation [5]

O
b

je
ct

 E
le

m
en

ts

Abstract

interface

AbstractInterface(m) iff interface(typeOf(m)) ∨

(abstract class(typeOf(m)) ∧ abstract method(m))

It provides a common interface

for operating on an object type

family, but delaying definition of

the actual operations to a later

time.

Retrieve

Retrieve(o) iff o ∈ attributes(C) ∧ ∃ assignment(o,

value): value = returnedValue(m) ∨ value = o2 ∈

attributes(C2) ∧ typeOf(o) = typeOf(o2)

To use an object from another

non-local source in the local

scope, thereby creating a

relationship

and tie between the local object

and the remote one.

T
y

p
e

R
el

a
ti

o
n

Inheritance
Inheritance(T1, T2) iff interface inherited(T1, T2) ∨

class inherited(T1, T2)

To use all of another classes’

interface, and all or some of its

implementation.

Table 1 – Object Elements and Type Relation EDPs definitions

EDP

category
EDP name Definition Explanation [5]

M
et

h
o

d
 C

a
ll

Recursion

Recursion(m1, m2) iff ∃ method invocation(m1, m2):

Source(method invocation(m1, m2)) = target(method

invocation(m1, m2) ∧

typeOf(m1) = typeOf(m2) ∧

signature(m1) = signature(m2)

To accomplish a larger task by

performing many smaller similar

tasks, using the same object

state.

Conglomeration

Conglomeration(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) = target(method

invocation(m1, m2) ∧

typeOf(m1) = typeOf(m2) ∧

signature(m1) ≠ signature(m2)

To bring together, or

conglomerate, diverse operations

and behaviours to complete a

more complex task within a single

object.

Extend method

Extend method(m1, m2) iff ∃ method invocation(m1,

m2):

Source(method invocation(m1, m2)) = target(method

invocation(m1, m2) ∧

Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) = signature(m2)

Add to, not replace, behaviour in

a method of a superclass while

reusing existing code.

Revert method

Revert method(m1, m2) iff ∃ method invocation(m1,

m2):

Source(method invocation(m1, m2)) = target(method

invocation(m1, m2) ∧

Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) ≠ signature(m2)

Bypass the current class’

implementation of a method, and

instead use the superclass’

implementation, reverting to an

’earlier’ method body.

Redirect

Redirect(m1, m2) iff ∃ method invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

typeOf(m1) ≠ typeOf(m2) ∧

signature(m1) = signature(m2)

To request that another object

perform a tightly related subtask

to the task at hand, perhaps

performing the basic work.

Delegate

Delegate(m1, m2) iff ∃ method invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

typeOf(m1) ≠ typeOf(m2) ∧

signature(m1) ≠ signature(m2)

To parcel out, or delegate, a

portion of the current work to

another method in another object.

Table 2 – The first six Method Call EDPs definitions

EDP

category
EDP name Definition Explanation [5]

M
et

h
o

d
 C

a
ll

Redirected

recursion

Redirected recursion(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

typeOf(m1) = typeOf(m2) ∧

signature(m1) = signature(m2)

To perform a recursive method,

but one that requires interacting

with multiple objects of the same

type.

Delegated

conglomeration

Delegated conglomeration(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

typeOf(m1) = typeOf(m2) ∧

signature(m1) ≠ signature(m2)

A Conglomeration pattern is

appropriate, but we need to work

with a distinct instance of our

object type, resulting in a need for

the Delegate pattern to be used.

Redirect in

family

Redirect in family(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) = signature(m2)

Redirect some portion of a

method’s implementation to a

possible cluster of classes, of

which the current class is a

member.

Delegate in

family

Delegate in family(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) ≠ signature(m2)

Related classes are often defined

as such to perform tasks

collectively. In such cases,

multiple objects of related types

can interact in generalized ways

to delegate tasks to one another.

Redirect in

limited family

Redirect in limited family(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

∃ T: ancestor(typeOf(m1), T) ∧ ancestor(typeOf(m2),

T) ∧ ¬Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) = signature(m2)

When Redirect in family is too

generalized, and it is necessary to

pre-select a sub-tree of the class

hierarchy for polymorphism.

Delegate in

limited family

Delegate in limited family(m1, m2) iff ∃ method

invocation(m1, m2):

Source(method invocation(m1, m2)) ≠ target(method

invocation(m1, m2) ∧

∃ T: ancestor(typeOf(m1), T) ∧ ancestor(typeOf(m2),

T) ∧ ¬Ancestor(typeOf(m1), typeOf(m2)) ∧

signature(m1) ≠ signature(m2)

When Delegate in family is too

generalized, and it is necessary to

pre-select a sub-tree of the class

hierarchy for polymorphism.

Table 3 – The second six Method Call EDPs definitions

References

[1] F. Arcelli et al., MARPLE: Metrics and Architecture Recovery Plug-in for Eclipse, Technical Report,

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)-12-02-06, University of Milano-

Bicocca, 2006.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software, Addison Wesley, 1994.

[3] Y. Gil, I. Maman, Micro Patterns in Java Code, in Proceedings of the 20th annual ACM SIGPLAN

conference on Object oriented programming, systems, languages, and applications (OOPSLA ’05),

October 2005, pp. 97-116.

[4] J. McC. Smith, D. Stotts, Elemental Design Patterns: A Formal Semantics for Composition of OO

Software Architecture, in Proceedings of the 27th Annual IEEE/NASA Software Engineering

Laboratory Workshop, Greenbelt, MD, 2002, pp. 183-190.

[5] J. McC. Smith, An Elemental Design Patterns Catalog, Tech. Rep. 02-040, Computer Science

Department, University of North Carolina at Chapel Hill, December 2002.

[6] J. McC. Smith, D. Stotts, SPQR: Flexible Automated Design Pattern Extraction From Source Code, in

Proceedings of the 2003 IEEE International Conference on Automated Software Engineering,

Montreal QC, Canada, October, 2003, pp. 215-224.

[7] S. Maggioni, Design Pattern Clues for Creational Design Patterns, Proceedings of the 1st International

Workshop on Design Pattern Detection for Reverse Engineering (DPD4RE 2006), Benevento, Italy,

October 2006.

[8] S. Maggioni, F. Arcelli, C. Tosi, M. Zanoni, Refining Design Pattern Detection through Design

Pattern Clues, submitted to the Journal of Systems and Software, July 2009.

[9] S. Maggioni, Design Pattern Detection and Software Architecture Reconstruction: an Integrated

Approach based on Software Micro-structures, Ph.D. Thesis, Milano-Bicocca University, 2009.

