DEFINITIONS OF THE METRICS USED FOR MACHINE LEARN-
ING

METRICS TAKEN FROM THE LITERATURE

Below, each Metrics is reported after other Metrics it depends on.

For each Metric the following information is reported:

e Name: the name of the Metric;
e Definition;
¢ Computation Details: all the important details about the computation, if needed;

Getter and setter are defined like this:

e with the name of “Accessor and Mutator” used by us for the sake of clarity (i.e., getter is an ac-
cessor, setter is a mutator),
e with the name “accessor” referred to either getter that setter, that is the terminology we often

find in the literature.

LINES OF CODE (LOC)

Definition: the number of lines of code of an operation or a class, including blank lines and comments.
References: [53]
Computation Details:

e for method: we count the LOC from the method signature to the last curly bracket.
e For class: we count the LOC from the class declaration to the last curly bracket.

e For package: we sum the LOC of the classes declared in the package.

e For project: we sum the LOC of all packages.

LINES OF CODE WITHOUT ACCESSOR OR MUTATOR METHODS (LOCNAMM)

Definition: the number of lines of code of a class, including blank lines and comments and excluding
accessor and mutator methods and corresponding comments.

References: [30]

Computation Details: we count the LOC from the class declaration to the last curly bracket.

NUMBER OF PACKAGES (NOPK)

Definition: total number of packages in a system.

References: -

NUMBER OF CLASSES (NOCS)

Definition: Total number of classes in a system, in a package or in a class.

References: -

Computation Details:

e for class: we sum up the number of nested classes.
e For package: we sum up the NOCS for all the classes in the package.
e For project: we sum up the NOCS for all the packages in the project.

NUMBER OF METHODS (NOM)

Definition: NOM represents the number of methods defined locally in a class, counting public as well
as private methods. Overridden methods are not taken into account.

References: [29] [53]

Computation Details:

e for class: we sum up the number of Methods Declared In Class.
e For package: we sum up the NOM for all the classes in the package.
e For project: we sum up the NOM for all the packages in the project.

NUMBER OF NOT ACCESSOR OR MUTATOR METHODS (NOMNAMM)

Definition: NOMNAMM represents the number of methods defined locally in a class, counting public as
well as private methods, excluding accessor or mutator methods.

References: [30]

Computation Details:

e for class: we sum up the number of Methods Declared In Class that are not accessor or mutator.
e For package: we sum up the NOMNAMM for all the classes in the package.
e For project: we sum up the NOMNAMM for all the packages in the project.

NUMBER OF ATTRIBUTES (NOA)

Definition: number of attributes of a class.

References: -

CycLomATIC CoMPLEXITY (CYCLO)

Definition: Cyclomatic Complexity is the maximum number of linearly independent paths in a method.
A path is linear if there is no branch in the execution flow of the corresponding code.

References: [29] [64]

Computation Details: we compute the strict cyclomatic complexity: with logical conjunction and logi-
cal and in conditional expressions also adding 1 to the complexity for each of their occurrences. i.e., the
statement if (a && b || ¢) would have a cyclomatic complexity of one but a strict cyclomatic complexity
of three. The minimum cyclomatic complexity is one.

WEIGHTED METHODS COUNT (WMC)

Definition: WMC is the sum of complexity of the methods that are defined in the class. We compute
the complexity with the Cyclomatic Complexity metric (CYCLO).

References: [29] [17]

WEIGHTED METHODS COUNT OF NOT ACCESSOR OR MUTATOR METHODS (WMCNAMM)

Definition: WMCNAMM is the sum of complexity of the methods that are defined in the class, and are
not accessor or mutator methods. We compute the complexity with the Cyclomatic Complexity metric
(CYCLO).

References: [30]

AVERAGE METHODS WEIGHT (AMW)

Definition: the average static complexity of all methods in a class. We compute the complexity with
the Cyclomatic Complexity metric (CYCLO).

Computation Details:

References: [61]

AVERAGE METHODS WEIGHT OF NOT ACCESSOR OR MUTATOR METHODS (AMWNAMM)

Definition: the average static complexity of all methods in a class, which are not accessor or mutator.
We compute the complexity with the Cyclomatic Complexity metric (CYCLO).

Computation Details:

WMCNAMM
_ AMWNAMM = ———, NOMNAMM + 0

x = NOMNAMM
AMWNAMM =0, NOMNAMM =0

References: [29]

MAXIMUM NESTING LEVEL (MAXNESTING)

Definition: the maximum nesting level of control structures within an operation.

References: [49]

WEIGHT OF CLASS (WOC)

Definition: the number of “functional” public methods divided by the total number of public members.
References: [61]

Computation Details: we compute this metrics as:

Number of Non Abstract Public Non Accessor or Mutator Methods
Total Number of Public Methods and Attribute

If Total Number of Public Methods and Attribute is zero, WOC is zero.

CALLED LocAL NOT ACCESSOR OR MUTATOR METHODS (CLNAMM)

Definition: the number of called not accessor or mutator methods declared in the same class of the
measured method.

References: [30]

NUMBER OF PARAMETERS (NOP)

Definition: number of parameter of a method.

References: -

NUMBER OF ACCESSED VARIABLES (NOAV)

Definition: the total number of variables accessed directly or through accessor methods from the
measured operation. Variables include parameters, local variables, but also instance variables and
global variables declared in classes belonging to the system.

References: [49]

Computation Details: we count the Used Variables defined within the system and not in external li-
braries. The context we consider are: MethodDeclarationParameter, CatchClause, EnumConstantDecla-
ration, VariableDeclarationExpression, VariableDeclarationStatement, SingleVariableDeclaration, Vari-
ableDeclarationFragment [95]. To count the variables accessed through accessor methods we get the
list of Called Methods and we count the Used Intra Variables by each accessor method in the set of
Called Methods. We count also the variables accessed through static methods.

AcCESS TO LocAL DATA (ATLD)

Definition: the number of attributes from the current classes accessed by the measured method di-
rectly or by invoking accessor methods.

References: [30]

Computation Details: we count the Used Intra Variables defined within the system and not in external
libraries. To count the variable accessed through accessor methods we get the list of Called Intra Meth-
ods and we count the Used Intra Variables by each accessor method in the set of Called Methods.

NUMBER OF LOCAL VARIABLE (NOLV)

Definition: The total number of variables accessed directly or through accessor methods from the
measured operation. Variables include parameters, local variables, but also instance variables and
global variables declared in classes belonging to the system.

References: [61]

Computation Details: We count the Used Variables defined within the system and not in external li-
braries. The context we consider are: MethodDeclarationParameter, CatchClause, EnumConstantDecla-

ration, VariableDeclarationExpression, VariableDeclarationStatement, SingleVariableDeclaration, Vari-
ableDeclarationFragment [95]. To count the variable accessed through accessor methods we get the
list of Called Methods and we count the Used Intra Variables by each accessor method in the set of
Called Methods. We count also the variable access through static methods.

TiGHT CLASS COHESION (TCC)

Definition: TCC is the normalized ratio between the number of methods directly connected with other
methods through an instance variable and the total number of possible connections between methods.
A direct connection between two methods exists if both access the same instance variable directly or
indirectly through a method call. TCC takes its value in the range [0, 1].

References: [29] [12] [13]
Computation Details: given:

Maximum number of possible connections: where N is the number of visible methods.

_Nx(N-1)

NP
2

Number of direct connections: NDC, computed using a connectivity matrix that record all direct con-

nected methods, making attention to cyclic calls among methods.

We compute:

TCC _ NDC NP #0
" NP

TCC =1 NP =0

For TCC only visible methods are considered, i.e., they are not private or implement an interface or
handle an event. Constructors are ignored. Constructors are a problem, because of indirect connec-
tions with attributes. They create indirect connections between methods which use different attrib-
utes, and increase cohesion, which is not real [29].

LACK OF COHESION IN METHODS (LCOM5)

Definition:

mem NOAcc(m)
NOA
NOM — 1

NOM —

LCOMS =

where M is the set of methods of the class, NOM the number of methods, NOA the number of attributes,
and NOAcc(m) is the number of attributes of the class accessed by method m

References: [29] [12]

Computation Details: For ., NOAcc(m) we sum up Used Intra Variables by not constructor meth-
ods of the measured class.

Then we compute:

mem NOAcc(m)

LCOMS = NOA NOM >1 A NOA> 0
NOM — 1

LCOMS5 =0 NOM <1 VNOAZO

NOM —

FANOUT

Definition: number of called classes.
References: [49]

Computation Details: we sum up the Called Classes belonging to the system.

ACCESS TO FOREIGN DATA (ATFD)
Definition: the number of attributes from unrelated classes belonging to the system, accessed directly
or by invoking accessor methods.

References: [61]

Computation Details:

e For methods: we sum up the Used Inter Variables belonging to the system, also through not-
Constructor, Public and not-Abstract Called Inter Methods of the system.

e For class: we sum up the Used Inter Variable belonging to the system, also through not Con-
structor, Public and not Abstract Called Inter Methods from the field declaration class of the
methods and from all the not Constructor and not Abstract Methods Declared In Class. We do
not declare a dependency to ATFD on method because we have to count each accessed variable

only once.

FOREIGN DATA PROVIDERS (FDP)

Definition: the number of classes in which the attributes accessed - in conformity with the ATFD met-
ric - are defined.

References: [49]

Computation Details: we sum up the classes where foreign data are defined, counting each class only
once.

RESPONSE FOR A CLASS (RFC)

Definition: RFC is the size of the response set of a class. The response set of a class includes “all me-
thods that can be invoked in response to a message to an object of the class”. It includes local methods
(also the inherited ones) as well as methods in other classes.

References: [29] [17]

Computation Details: we sum up also the Called Inter Methods and Called Hierarchy Methods by the
Inherited Methods counting each method only one time. We consider only call to classes belonging to
the system.

COUPLING BETWEEN OBJECTS CLASSES (CBO)

Definition: two classes are coupled if one of them uses the other, i.e., one class calls a method or ac-
cesses an attribute of the other class. Coupling involving inheritance and methods polymorphically
called are taken into account. CBO for a class is the number of classes to which it is coupled.

References: [29] [17]

Computation Details: We sum up all the unrelated classes belonging to the system that define the
variables and types used by the measured class and its Ancestor Classes and by methods the measured
class methods declares and inherit. We count each class once.

CALLED FOREIGN NOT ACCESSOR OR MUTATOR METHODS (CFNAMM)
Definition:

e For method: the number of called not accessor or mutator methods declared in unrelated clas-
ses respect to the one that declares the measured method.
e For class: the number of called not accessor or mutator methods declared in unrelated classes

respect to the measured one.
We consider only call to classes belonging to the system.
References: [30]

Computation Details: we sum up the number of not accessor or mutator Called Inter Methods and
Called Hierarchy Methods of the system. We do not count the call to default constructor of classes.

COUPLING INTENSITY (CINT)

Definition: the number of distinct operations called by the measured operation.
References: [61]

Computation Details: we sum up Called Inter Methods belonging to system classes.

COUPLING DISPERSION (CDISP)

Definition: the number of classes in which the operations called from the measured operation are de-
fined, divided by CINT.

References: [61]

Computation Details:

CDISP = FANOUT CINT # 0
" CINT

CDISP =0 CINT =0

MAXIMUM MESSAGE CHAIN LENGTH (MAMCL)

Definition: the maximum length of chained calls in a method.

References: [30]

Computation Details: we compute the maximum length of all call chains in a method. Call chains have
a minimum length of two.

NUMBER OF MESSAGE CHAIN STATEMENTS (NMCS)

Definition: the number of different chained calls in a method.
References: [30]

Computation Details: we compute the number of call chains in a method. Call chains have a minimum
length of two.

MEAN MESSAGE CHAIN LENGTH (MEMCL)

Definition: the average length of chained calls in a method.
References: [30]

Computation Details: we compute the rounded average length of all call chains in a method. Call
chains have a minimum length of two. If NMCS is zero, then MeMCL is zero too.

CHANGING CLASSES (CC)

Definition: the number of classes in which the methods that call the measured method are defined in.

References: [61]

CHANGING METHODS (CM)

Definition: the number of distinct methods that call the measured method.

References: [61]

NUMBER OF ACCESSOR METHODS (NOAM)

Definition: the number of accessor (getter and setter) methods of a class.

References: [49]

NUMBER OF PUBLIC ATTRIBUTES (NOPA)

Definition: the number of public attributes of a class.

References: [49]

LOCALITY OF ATTRIBUTE ACCESSES (LAA)

Definition: the number of attributes from the method’s definition class, divided by the total number of
variables accessed (including attributes used via accessor methods, see ATFD), whereby the number of
local attributes accessed is computed in conformity with the ATLD specifications. We consider only va-
riables declared in system classes.

References: [49]

Computation Details: each attribute count only one, independently from the ways the class accesses
it (e.g., directly or through accessor and/or mutator) and how many times accesses it.

DEPTH OF INHERITANCE TREE (DIT)

Definition: the depth of a class, measured by DIT, within the inheritance hierarchy is the maximum
length from the class node to the root of the tree, measured by the number of ancestor classes. DIT has
a minimum value of one, for classes that do not have ancestors.

References: [29] [17]

Computation Details: we consider only hierarchy classes belonging to the system: we visit the Ances-
tor Classes in a bottom up order and we stop counter at the first class that does not belong to the sys-
tem.

NUMBER OF INTERFACES (NOI)

Definition: number of interfaces declared in a package or in a system.

References: -

NUMBER OF CHILDREN (NOC)

Definition: number of children counts the immediate subclasses subordinated to a class in the class
hierarchy.

References: [29] [17]

NUMBER OF METHODS OVERRIDDEN (NMO)

Definition: NMO represents the number of methods that have been overridden i.e., defined in the su-
perclass and redefined in the class. This metric includes methods doing super invocation to their par-
ent method. NMO is not defined for classes that have not superclass.

References: [29] [53]

NUMBER OF INHERITED METHODS (NIM)

Definition: NIM is a simple measure showing the amount of behaviour that a given class can reuse. It
counts the number of methods that a class can access in its superclasses. NIM is not defined for classes
that have not superclass.

References: [29] [53]

NUMBER OF IMPLEMENTED INTERFACES (NOII)

Definition: number of implemented interfaces by a class.

References: -

CUSTOM METRICS DEFINED FOR MACHINE LEARNING

For Each Custom Metrics the following information is reported:

e Name: the name of Custom Metrics;
e Definition.

NUMBER OF DEFAULT ATTRIBUTES (NODA)

Definition: number of attributes with default visibility by a class. The default visibility is equal to a
non - protected, non - private and non - public visibility.

NUMBER OF PRIVATE ATTRIBUTES (NOPVA)

Definition: number of private attributes by a class.

NUMBER OF PROTECTED ATTRIBUTES (NOPRA)

Definition: number of protected attributes by a class.

NUMBER OF FINAL ATTRIBUTES (NOFA)

Definition: number of final attributes by a class.

NUMBER OF FINAL AND STATIC ATTRIBUTES (NOFSA)

Definition: number of final and static attributes by a class.

NUMBER OF FINAL AND NON - STATIC ATTRIBUTES (NOFNSA)

Definition: number of final and non - static attributes by a class.

NUMBER OF NOT FINAL AND NON - STATIC ATTRIBUTES (NONFNSA)

Definition: number of non - final and non - static attributes by a class.

NUMBER OF STATIC ATTRIBUTES (NOSA)

Definition: number of static attributes by a class.

NUMBER OF NON - FINAL AND STATIC ATTRIBUTES (NONFSA)

Definition: number of non - final and static attributes by a class.

NUMBER OF ABSTRACT METHODS (NOABM)

Definition: number of abstract methods by a class.

NUMBER OF CONSTRUCTOR METHODS (NOCM)

Definition: number of constructor methods by a class.

NUMBER OF NON - CONSTRUCTOR METHODS (NONCM)

Definition: number of non - constructor methods by a class.

NUMBER OF FINAL METHODS (NOFM)

Definition: number of final methods by a class.

NUMBER OF FINAL AND NON - STATIC METHODS (NOFNSM)

Definition: number of final and non - static methods by a class.

NUMBER OF FINAL AND STATIC METHODS (NOFSM)

Definition: number of final and static methods by a class.

NUMBER OF NON - FINAL AND NON - ABSTRACT METHODS (NONFNABM)

Definition: number of non - final and non - abstract methods by a class.

NUMBER OF FINAL AND NON - STATIC METHODS (NONFNSM)

Definition: number of final and non - static methods by a class.

NUMBER OF NON - FINAL AND STATIC METHODS (NONFSM)

Definition: number of non - final and static methods by a class.

NUMBER OF NON - FINAL AND STATIC METHODS (NONFSM)

Definition: number of non - final and static methods by a class.

NUMBER OF DEFAULT METHODS (NODM)

Definition: number of methods with default visibility by a class. The default visibility is equal to a non
- protected, non - private and non - public visibility.

NUMBER OF PRIVATE METHODS (NOPM)

Definition: number of methods with private visibility by a class.

NUMBER OF PROTECTED METHODS (NOPRM)

Definition: number of protected methods by a class.

NUMBER OF PuBLIC METHODS (NOPLM)

Definition: number of public methods by a class.

NUMBER OF NON - ACCESSORS METHODS (NONAM)

Definition: number of non - accessors methods by a class.

NUMBER OF STATIC METHODS (NOSM)

Definition: number of static methods by a class.

REFERENCES

[12] L.Briand,]. Daly, and]J. Wust, “A unified framework for coupling measurement in object-
oriented systems,” IEEE Transactions on Software Engineering, vol. 25, no. 1, pp. 91-121, 1999.

W.]. Brown, R. C. Malveau, T.]. Mowbray, and]. Wiley, AntiPatterns - Refactoring Software,
Architectures, and Projects in Crisis. T. Hudson, Ed. Robert Ipsen, 1998.

0. Ciupke, “Automatic detection of design problems in object-oriented reengineering,” in
Proceedings of the Technology of Object-Oriented Languages and Systems (TOOLS 1999), 1999,
Santa Barbara, California: IEEE Comput. Soc, pp. 18-32. doi:10.1109/T0OOLS.1999.787532.

E. Van Emden, E. van Emden, and L. Moonen, “Java Quality Assurance by Detecting Code Smells,”
in Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE 2002), 2002,
Richmond, USA: IEEE, pp. 97-106. do0i:10.1109/WCRE.2002.1173068.

V. Ferme, “JCodeOdor: A Software Quality Advisor Through Design Flaws Detection,” Universita
degli Studi di Milano-Bicocca, 2013.

M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, p. 212. doi:10.1007 /3-540-39538-5.

M. Lorenz and]. Kidd, Object-oriented software metrics: a practical guide. Prentice-Hall, Ed.
1994.

R. Marinescu, “Measurement and quality in object-oriented design,” Politehnica University of
Timisoara, 2002.

T. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering, vol. SE-2, no. 4,
pp. 308-320, 1976. d0i:10.1109/TSE.1976.233837.

“Eclipse DT Programmer’s Guide.” [Online]. Available:
http://help.eclipse.org/kepler/index.jsp?topic=%Z2Forg.eclipse.jdt.doc.isv%2Fguide%?2Fjdt_int.
htm.

