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ABSTRACT
Code smells can be subjectively interpreted, the results provided
by detectors are usually different, the agreement in the results is
scarce, and a benchmark for the comparison of these results is not
yet available. The main approaches used to detect code smells are
based on the computation of a set of metrics. However code smell
detectors often use different metrics and/or different thresholds,
according to their detection rules. As result of this inconsistency
the number of detected smells can increase or decrease accordingly,
and this makes hard to understand when, for a specific software, a
certain characteristic identifies a code smell or not. In this work, we
introduce WekaNose, a tool that allows to perform an experiment
to study code smell detection through machine learning techniques.
The experiment’s purpose is to select rules, and/or obtain trained
algorithms, that can classify an instance (method or class) as af-
fected or not by a code smell. These rules have the main advantage
of being extracted through an example-based approach, rather then
a heuristic-based one.
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1 INTRODUCTION
Code smell detection is a well-known thorny issue, in fact since
their identification [6] no one was able to create a definition that
satisfies everyone else. The main reason is that they are quite open
to interpretation and they can assume different forms based on the
context that “surround” them. Usually, detection rules are based on
some metrics and related thresholds, often chosen in an arbitrary
way, leading to many differences in the detection results. In this
work we propose a solution implemented in a tool called WekaNose
that exploits supervised machine learning techniques, to support a
learn-by-example process to construct code smell detection rules
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and/or obtain trained algorithms able to evaluate new candidates.
Therefore, this tool can be used by whoever is interested into: (i)
perform a deep study that concerns a specific code smell, (ii) find
correlations between code smells and some specific metrics or (iii)
create rules for rule-based code smell detectors. This experiment,
synthetized in Figure 1, is divided in two main parts: (i) the first one
concerns the creation of the dataset, discussed in Section 3 and (ii)
the second part concerns the machine learning algorithms trained
and tested using the dataset created in the first part, discussed in
Section 4.

Figure 1: Flow graph of the experiment

2 RELATEDWORKS
In the literature we found few works exploiting machine learning
techniques for code smell detection, such as [1] [7]. The process
followed by WekaNose has been already used in two studies: the
first one [2] on four code smells (God Class, Long Method, Data
Class and Feature Envy) and the second one [3] on two code smells
(Long Parameter List and Switch Statements). In both cases it leads
to the training of rule-based, decision tree and bayesian algorithms
that guaranteed high performance. In those cases the process was
performed “manually”, which means that the result of each step
described in Sections 3 and 4 was manually prepared for the next
one. Hence performing the whole experiment was extremely time
consuming. WekaNose allows to follow a workflow containing all
the necessary steps and automatize the most tedious ones.

3 DATASET CREATION
We discuss the process that should be followed to create the dataset,
i.e. a file with csv extension. The process can be separated in six
steps, three of which can be performed using WekaNose.
• Creation of a definition for the code smell to be detected.
This initial step is very important because the definition will
affect the entire experiment, hence we strongly recommend to
exploit some literature (e.g. [6]) to ensure the reliability of the
choice.

• Selection or creation of anheterogeneous collection of soft-
ware systems, from which the instances of the dataset can be
extracted (e.g. Qualitas Corpus Repository1).

1http://qualitascorpus.com/
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• Computation of a large set of object-oriented metrics on
the selected systems at class, method and package levels. This
step is performed by WekaNose using the DFMC4J (Design
Features and Metrics for Java) tool developed by our ESSeRe Lab
[4], but any other tool for metrics computation can be used.

• Choice of the Advisors through WekaNose: an Advisor is a
deterministic rule that provides a classification of a code element
(method or class), telling if it is a code smell or not. The idea
is that Advisors should approximate the label better than the
random choice, and by aggregating their suggestions we should
be able to sample more code elements affected by code smells.
WekaNose implements a more generic definition which consists
in a rule that should fall in one of these three main groups:
– the ones that most likely characterise the not smell instances;
– the ones that most likely characterise the affected instances;
– all the other instances that cannot be easily classified.
The rules can be extracted by some code smells detector or works
in the literature, but they can affect the experiment. Hence, at
least one Advisor of every group should be specified in order to
balance the distribution of the instances.

• Sampling Process through WekaNose: the dataset elements
(method or class) will be divided in groups based on the Advisors’
results. After that the sampling procedure, described by Figure 2,
will be done automatically by WekaNose. As result, a not labelled
version of the dataset is created by WekaNose.

Figure 2: Sampling process

• Labelling Process: the dataset’s instances have to be manually
evaluated as affected or not affected by the code smell using the
definitions previously created. Moreover, a set of features that
should be more consistent as possible with the definitions that
characterise the code smell can be gathered, for example using the
literature or exploiting some available detection implementation.
Then, these features can be used to support the labelling process.

4 MACHINE LEARNING TECHNIQUES
In this section the part of the experimentation that concerns the
application of machine learning algorithms is discussed. We identi-
fied three steps, two of which can be performed using WekaNose. It
is important to underline that WekaNose relies heavily on WEKA2

and is designed with the aim to reduce the time needed for set-
ting the experiment. Hence, if the experimentation requires the
application of specific pre/post processing algorithms or a more
customizable type of setting, more specific tools for this task can
be taken in consideration, as for example WEKA itself.
• Selection of the machine learning algorithms: every algo-
rithm has its strengths and its weaknesses. In our experience
([2], [3]) the paradigms that most likely lead to high performance
with this type of dataset are the rule-based and decision tree.

2https://www.cs.waikato.ac.nz/ml/weka/

• Detection of the best parameters through WekaNose: the
parameters are considered the best if the performances of the
machine learning algorithms are maximised by them. WEKA
provides a set of algorithms3 that perform a greed search with
this purpose, that can be used in WekaNose.

• Machine learning algorithms comparison throughWekaNose:
once all the algorithms and the datasets are configured through
WekaNose GUI, it is possible to “Start the experiment” 4. This
means that n-fold cross-validation tests with m repetitions will
be performed for each classifier, where m and n are values that
can be specified through the GUI. The result of this execution
will be saved in a file that will contain specific information for
each one of the (m · n) executions, such as Accuracy, F-measure,
and Area Under ROC performance measurements. These values
will be used for comparing the algorithms using the corrected
paired t-tests.

5 CONCLUSION
We introduced a work-flow semi-automated through WekaNose
which aims to study the code smells through a machine learning
approach. The main advantage of this procedure is to select rules or
trained algorithms that can classify an instance not just by a subjec-
tive way, but in a experience-based way. We underlined which steps
are the most likely to affect the experimentation and we suggested
to base every choice that concerns these steps on the available lit-
erature, in order to minimize their arbitrariness. In future develop-
ments we would like to consider more metrics and make WekaNose
compatible with already existing code smell detectors to directly
use their detection rules as Advisors. In this direction we could also
think to develop a benchmark platform for comparing code smells
detection results and the performances of different tools. Moreover,
we could extend WekaNose by considering other code smells or
other issues as antipatterns and architectural smells [5].
For any further information please visit http://essere.disco.unimib.
it/wiki/wekanose and watch the Demo Tutorial5 available online.
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